Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 6, 2004 Interim Progress-29 Jul 2003 — 08 Aug 2003
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Bell Labs Algorithms Pow Wow N00014-03-M-0141

6. AUTHOR(S)

F. Bruce Shepherd, Chandra Chekuri, Anupam Gupta, Vahab
Mirrokni, Hadas Shachnai, Seffi Naor, Gordon Wilfong, Mansoor
Alicherry, George Karakostas, Adrian Vetta, Dan Bienstock,

Randeep Bhatia

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Lucent Technologies Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

AGENCY REPORT NUMBER
Office of Naval Research
Ballston Tower One

800 North Quincy Street
Arlington, VA 22217 — 5660

11. SUPPLEMENTARY NOTES

12 a DISTRIBUTION /AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRACT (Maximum 200 words)

For two weeks researchersin algorithms gathered to remind each other of some old unsolved problems and to present some new ones.
People broke off into groups according to their interest in certain problems. Problems were presented in the following areas: the k-cut
and multiway cut, Min-max programming, triangle finding in linear time, directed multicut, minimum power k-connected subgraph,
job scheduling with communication delays, bounded-degree biclique cover, metric labeling, priority Steiner Tree, network design:
orientation constraints, edge-coloring dynamic bipartite multi-graphs, edge coloring bipartite multi-hypergraphs, optimal cost
chromatic partition (OCCP), single —source unsplittable flow, confluent flow, combinatorial algorithms for short-path-decomposable
flows, shortest path routing, and packing dijoins and feedback arc sets. In each of these areas the problems were identified and
progress made during the meeting was presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES
21
16. PRICE CODE
17. SECURITY CLASSIFICATION | 18- SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

Bell Labs Algorithms Pow Wow: July 29 - August 8, 2003

THE WORD "POW WOW?” comes from the Algonquin word ”PauWau” which was used to
describe the medicine men and spiritual leaders. Early Europeans thought the word referred to an
entire event. As Indian tribes learned English, they accepted this definition. Powwow time has thus
come to mean people meeting together, to join in dancing, singing, visiting, renewing old
friendships and making new ones. This is a time to renew thoughts of the old ways and to preserve
a rich heritage.

For two weeks researchers in algorithms gathered to remind each other of some old
unsolved problems and to present some new ones. People broke off somewhat randomly into
groups according to when and whether they became interested in certain of the problems.
Here is a list of the problems presented, as well as some of the progress that was made
during the meeting. We shall see later whether some of the groups end up settling any of
the questions, or other results emerging from this discourse. We gratefully acknowledge the
support received from the Office of Naval Research by way of a basic research grant.

Participants:

Mansoor Alicherry, Bell Labs, mansoor@research.bell-labs.com
Matthew Andrews, Bell Labs, andrews@research.bell-labs.com
Elliot Anshelevich, Cornell University, anshelev@research.bell-labs.com
Randeep Bhatia, Bell Labs, randeep@research.bell-labs.com

Dan Bienstock, Columbia University, dano@ieor.columbia.edu
Chandra Chekuri, Bell Labs, chekuri@research.bell-labs.com

Ken Clarkson, Bell Labs, clarkson@research.bell-labs.com

Steve Fortune, Bell Labs, sjf@research.bell-labs.com

Anupam Gupta, Carnegie Mellon University, anupamg@cs.cmu.edu
George Karakostas, McMaster University, karakos@mcmaster.ca
Vahab Mirrokni, MIT, mirrokni@theory.lcs.mit.edu

Seffi Naor, Technion University, naor@cs.Technion.AC.IL

Hadas Shachnai, Bell Labs, hadas@research.bell-labs.com

Bruce Shepherd, Bell Labs, bshep@research.bell-labs.com

Adrian Vetta, McGill University, vetta@jeff.cs.mcgill.ca

Gordon Wilfong, Bell Labs, gtw@Qresearch.bell-labs.com

Lisa Zhang, Bell Labs, ylz@research.bell-labs.com

Chandra Chekuri
0.1 Some Simple Cut Problems

Two fundamental graph partitioning problems are the k-cut problem and the multiway cut
problem. In both problems we are given an undirected edge-weighted graph G = (V, E)
with w(e) denoting the weight of edge e € E. In the k-cut problem the goal is to find a
minimum weight set of edges to separate the graph into at least k& disconnected components.
In the multiway cut problem we are given a set of k£ terminals, X C V, and the goal is
to find a minimum weight set of edges to separate the graph into components, such that
each terminal is in a different connected component. Chekuri, Guha, and Naor [3] defined a
common generalization of the two problems that they refer to as the Steiner k-cut problem.
We are given an undirected weighted graph G, a set of terminals X C V, and an integer
k < |X|. The goal is to find a minimum weight cut that separates the graph into k
components with vertex sets Vi,V5,..., Vg, such that VN X #Pfor 1 <:<k. f X =V,
we obtain the k-cut problem. If | X| = k& we obtain the multiway cut problem.

The k-cut problem can be solved in polynomial time for fixed & [8, 9], but is NP-hard
when k is part of the input [8]. In contrast, the multiway cut problem is NP-hard for
all k£ > 3 [4]. It follows that the Steiner k-cut problem is NP-hard for all ¥ > 3. For the
multiway cut problem Calinescu, Karloff and Rabani [2] gave a 1.5—1/k approximation using
an interesting geometric relaxation. Karger et al. [10] improved the analysis of the integrality
gap of this relaxation and obtained an approximation ratio of 1.3438 — €, where ¢, tends to
0 as k tends to co. For the k-cut problem Saran and Vazirani [13] gave a 2— 2 approximation
algorithm using a greedy algorithm. Recently, two different 2-approximations for the k-cut
problem were obtained. The algorithm of Naor and Rabani [11] is based on rounding a
linear programming formulation of the problem and the algorithm of Ravi and Sinha [12]
is based on the notion of network strength.

In [3], two approximation algorithms are presented for the Steiner k-cut problem. The
first algorithm is combinatorial and achieves a factor of 2 — % The algorithm is based on
choosing cuts from the Gomory-Hu tree and it is very similar to approximation algorithms
developed for the k-cut problem and the multiway cut problem [14]. The second algorithm
is a 2-approximation algorithm for the Steiner k-cut problem which is based on rounding
a linear programming formulation. Although the formulation is a generalization of the
formulation in [11] (for the k-cut problem), the rounding scheme differs substantially. The
rounding in [11] exploits the properties of the optimal solution to the LP relaxation. These
properties do not hold for the relaxation of the Steiner k-cut problem. The new rounding
is based on the primal dual algorithm and analysis of Goemans and Williamson [7] for the
Steiner tree problem. As a consequence, the rounding algorithm extends to any feasible
solution of the linear programming formulation.

In [3], a bi-directed formulation for the global minimum cut problem is also presented
and it is shown that that the linear relaxation of this formulation is exact.

Open Problems:

Is the k-cut problem Max-SNP hard?
Is there a better than 2 approximation for the k-cut problem?
Is there a better than a 2 approximation for the Steiner k-cut problem?

The integrality gap of the LP in [11, 3] is 2 even for k = 2. Is there a strengthening
of the LP that gives an optimal solution for k¥ = 27 This was accomplished by Dan
Bienstock [1] by using lifting. Can we use his ideas to obtain an improved integrality
gap for larger values of k.

For the multiway cut problem, Freund and Karloff [6] have shown that the integrality
gap of the LP in [2] is at least 8/(7+1/(k—1)). However the best upper bound known
is 1.3438 — ¢ [10]. Can this gap be bridged?

During the workshop Dan Bienstock queried whether the polyhedron of vectors x such
that z(H) > 2 for each spanning 2-connected subgraphs gave a gap of better than 2.
Shepherd and Vetta thus asked whether there is an a > 1 every 4k-connected graph
could be decomposed into ak spanning 2-edge-connected subgraphs. Naor and Shep-
herd noted that if this were true, one could also find a better-than-2 approximation
for the min-cost 2-edge-connected subgraph problem (an open problem).

Anupam Gupta

0.2 Min-Max Programming

We are given a directed complete bipartite graph G = (U, V, E), where E = (U XV)U(V xU),
with edge weights d : E — Z. A feasible labeling of the vertices is an assignment of values
z : U UV — Z which satisfies

z(u) > Iglea,‘;({x(v) +d(v,u)} Vu € Usz(v) > IJIEIIIJI{QI(U) + d(u,v)} YweV. (1)

Problem: Decide in polynomial time whether G has a feasible labeling.

Previous Results: The problem is known to be in NP N co-NP, and can be solved in
pseudo-polynomial poly(n, dmax) time. If the edge weights are non-negative, polynomial-
time solutions are known. These results can be found, e.g., in a paper of Moehring, Skutella
and Stork (STAM J. Comput., 2002).

0.3 Triangle finding in linear time

Problem: Given a undirected graph G = (V, E), decide in linear time whether G has a
triangle (i.e., an induced K3).

Previous Results: There is a trivial solution in O(n?®) time, which can be improved to
O(n¥) by fast matrix multiplication. An algorithm running in O(m!*) time can be found
in a paper of Alon,Yuster and Zwick (STOC, 1994), along with references to above results.

0.4 Directed Multicut

Given a directed graph G = (V, A), and a set of tuples (s;,t;) € V x V for 1 < i <k, the
minimum directed multicut problem asks for a set § C A of minimum cardinality such that
G — S has no s;-t; path for all 4.

Problem: Does there exist an O(logn) approximation?

Previous Results: An O(min{k,+/n}) approximation is known due to Gupta (SODA,
2003), extending results of Cheriyan, Karloff and Rabani (FOCS, 2001). The natural linear
program has an integrality gap of (k — €), shown by Saks Samrodnitsky and Zosin (2002).

Vahab Mirrokni

1. Minimum Power k-connected subgraph: Given a graph G(V, E) withw : E(G) —
R, the power of vertex v € V(G) is P(v) = max,,¢p(g) w(vu). The power of graph G
is the sum of the powers of vertices, i.e, P(G) = > v € V(G)P(v). Our goal is to find
a k-(edge-)connected subgraph of a given graph, G, with the minimum total power,
minimizeg guheraph oP(G") where G’ is k-(edge-)connected.

Comments: The problem is NP-complete even for £k = 1. O(k) approximations are

known for edge-connected and vertex connected subgraph. We are seeking approxi-

mation algorithm with o(k) ratios.

2. Job Scheduling with Communication Delays: We are given n unit length jobs,
m parallel machines, and a precedence constraint graph G(V, E). We are also given a
communication delay p. (u,v) € E(G) means that if jobs u and v are scheduled in the
same machine, then v’s starting time should be greater than or equal to u’s completion
time (s, > sy + 1). If u and v are scheduled in different machines v’s starting time
should be greater than or equal to u’s completion time plus p (s, > s, + 1+ p). The
goal is to schedule all jobs and minimize the total makespan.

Comments: The problem is NP-complete. There are two cases for the problem:
duplication of job is allowed or not. Notice duplicating a job may help to decrease
makespan sometimes. If duplication is allowed then an algorithm of O(Flgol%%) is
known. Getting constant factor approximations or inapproximability results for both

cases are desirable.

Hadas Shachnai

0.5 The Bounded-degree Biclique Cover Problem

Let B = (V1,V3, E) be a bipartite graph. Recall that a bicliqgue is a complete bipartite
graph; a biclique cover is a collection C = { B4, ..., By} of bicliques that cover all the edges
of B, i.e., any edge e € E is in some biclique B; € C.

In the biclique cover (BC) problem we are given a bipartite graph B, and we need to
find for B a biclique cover of minimum cardinality. The BC problem is known to be hard
to approximation within factor n¢, for some e > 0, where n = |V} U V5| is the size of the
graph ([3, 1]).

The BC problem is the special case of BC in which the bipartite graph B is bounded-
degree in one side; that is, the degree of any vertex v € V; is at most d, where d > 1 is
some constant. The BCy problem arises e.g. in optimizing the sizes of address tables on
the Internet.

Open Problem: Is the BC,; problem NP-hard? (hard to approximate?)
Known Results: BC; can be approximated within factor d, by a greedy algorithm, and
within factor O(logd) when |V;i|/|V2| <7, and r > 1 is some fixed constant [2].

References

[1] C.Lund and M. Yannakakis. On the hardness of approximating minimization problems.
J. of the ACM, 41:960-981, 1994.

[2] H. Shachnai. On Bounded-degree biclique covers. Manuscript, 2003.

[3] H.U. Simon. On approximate solutions for combinatorial optimization problems. STAM
J. on Discrete Math. 3:294-310, 1990.

Seffi Naor

0.6 Metric Labeling

Motivated by certain classification problems that arise in computer vision and related fields,
Kleinberg and Tardos recently introduced the metric labeling problem. In a typical classifi-
cation problem, one wishes to assign labels to a set of objects to optimize some measure of
the quality of the labeling. The metric labeling problem captures a broad range of classifi-
cation problems where the quality of a labeling depends on the pairwise relations between
the underlying set of objects. More precisely, the task is to classify a set V' of n objects by
assigning to each object a label from a set L of labels. The pairwise relationships between
the objects are represented by a weighted undirected graph G = (V, E), where w(u,v) rep-
resents the strength of the relationship between u and v. The objective is to find a labeling,
a function f : V — L, that maps objects to labels, where the cost of f, denoted by Q(f),
has two components.

e For each u € V, there is a non-negative assignment cost ¢(u,%) to label u with 4. This
cost reflects the relative likelihood of assigning labels to w.

e For each pair of objects u and v, the edge weight w(u,v) measures the strength of
their relationship. This models the assumption that strongly related objects should
be assigned labels that are close. This is modeled in the objective function by the
term w(u,v) - d(f(u), f(v)) where d(-,-) is a metric on the labels L.

Thus

QU =D clu, flw) + D w(u,v)-d(f(u), f(v)

ueV (uw)EE

and the goal is to find a labeling of minimum cost. We remark that if the distance function
d is not a metric, then determining whether a graph can be colored by k colors is a special
case of the labeling problem.

Metric labeling has rich connections to some well known problems in combinatorial opti-
mization. It is related to the quadratic assignment problem, an extensively studied problem
in Operations Research. A special case of metric labeling is the 0-extension problem, studied
by Karzanov. There are no assignment costs in this problem, however, the graph contains
a set of terminals, t1,...,t;, where the label of terminal ¢; is fixed in advance to %, and the
non-terminals are free to be assigned to any of the labels. As in the metric labeling problem,
a metric is defined on the set of labels. Karzanov showed that certain special cases (special
metrics) of the 0-extension problem can be solved optimally in polynomial time. Clearly,
the 0-extension problem generalizes the well-studied multi-way cut problem in which the
metric on the label set is the uniform metric.

Kleinberg and Tardos obtained an O(log k log log k) approximation for the general met-
ric labeling problem, where k£ denotes the number of labels in L, using the probabilistic
tree approximations technique. They also gave a 2-approximation for the uniform metric
using a linear programming formulation. Chekuri et al gave a natural linear programming

formulation for the general metric labeling problem and proved that the integrality gap of
the formulation is O(log k loglog k) for general metrics and 2 for the uniform metric.

A natural and interesting question is whether there exists a constant factor approxi-
mation algorithm for the metric labeling and 0-extension problems. This is particularly
interesting given the rich connection of these problems to other well-studied optimization
problems. We note that the best lower bound on the approximability of these problems is
only MAX SNP hardness which follows from the MAX SNP hardness of the multi-way cut
problem. Understanding the integrality gap of the linear programming formulation men-
tioned above is a very promising direction. We note that a solution to this linear program
has a very interesting geometric interpretation. It defines an embedding of the graph in a
k-dimensional simplex, however, the distance between points in the simplex is defined by a
special metric and not by the (standard) £; metric.

There are many special cases of the metric labeling problem that are interesting in their
own right from both theoretical and applications point of view. One such special case is
the truncated linear metric, where the distance between two intensities 7 and j is given
by d(i,7) = min(M,|i — j|). This special case is motivated by its direct applications to
two problems in computer vision, namely image restoration and visual correspondence. For
the truncated linear metric a factor of 2 + v/2 ~ 3.414 can be shown via the above linear
programming relaxation. It would be very interesting to study the approximability of the
truncated quadratic distance function for which very little is currently known.

0.7 Priority Steiner Tree Problem

In the next telecommunication age it will be possible to support new multimedia applications
in a global environment and design new services on flexible platforms without upgrading
the physical infrastructure. This requires new network architectures capable of offering
transport and computation services to communication applications with stringent quality-
of-service (QoS) requirements. A key issue is the provision of network resources so as to meet
these requirements. The multicast backbone of the internet (Mbone) is increasingly used for
broadcasting live audio and video in digital form all over the world. However, heterogeneity
is an enduring characteristic of the Internet creating difficulties in the transmission of real-
time multimedia data across groups. Heterogeneity originates, e.g., from the wide range of
network transmission rates, varying across many orders of magnitude, and from the vast
differences in computing power. Members of a group (receivers) may vary significantly in
their characteristics, e.g., bandwidth availability or computing power. This means that a
source would be required to transmit in a way that matches the most constrained receiver.
Instead, it would be advantageous to send data to multiple receivers at heterogeneous rates
and in a way that matches the capability of each individual receiver.

Motivated by these considerations, Charikar et al. studied the following optimization
problem, called the priority Steiner tree problem. We are given an edge weighted graph
representing the network, a multicast root r and a subset of the vertices, the terminals
(clients). Each terminal has a priority level, an integer from 1 to K (1 being highest
priority and K being lowest), and each edge is labeled with a priority as well. The priority

models the level of service required by a client. The objective is to find a minimum cost
tree that connects r to the terminals such that each terminal has a path to the root with
every edge on the path having priority at least that of the terminal in question. Thus, each
terminal is guaranteed to receive service along the path that meets its requirements. This
problem is a clear generalization of the well known Steiner tree problem.

Charikar et al. gave a min{O(log |X|), 2K }-approximation algorithm, where X is the set
of terminals. A 2K-approximation follows easily by finding a separate Steiner tree for each
priority level. The logarithmic approximation is obtained by adapting the greedy online
Steiner tree algorithm to the priority Steiner tree problem. The terminals are greedily
added to the current tree in decreasing order of priority. However, the only hardness of
approximation result known is the one from the Steiner tree problem. We note that the
priority Steiner problem is also a special case of the directed Steiner problem. This can be
seen by replicating the graph K times, where copy ¢ contains edges that have priority at
least as high as ¢. For each vertex v and 4, 1 < 1 < K, there is a zero-cost directed edge
from vertex v in copy % to vertex v in copy ¢ — 1. The root is vertex r in copy 1.

A major open question is whether the priority Steiner tree problem is approximable to
within a constant factor. The natural cut relaxation has recently shown to have an Q(log K')
integrality gap. A strengthened flow formulation is the following: flow is allowed to reach
the root only on paths with edges that have non-decreasing priorities. The integrality gap
for the cut formulation does not seem to apply to the flow formulation.

0.8 Network Design: Orientation Constraints

An orientation constraint on a pair of nodes v and v states that a feasible solution may
include at most one of the arcs (u,v) and (v,). Orientation constraints arise in many net-
work design problems, since link/edge resources such as fiber, are commonly unidirectional
(i.e. they support traffic in only one of the two possible directions at a given time). We are
interested in studying the following problem: given a crossing supermodular requirement
function and a set of orientation constraints, find a subgraph with a minimum orientation
cost that satisfies the requirement function as well as the orientation constraints (the cost
of an orientation is defined to be the sum of the costs of the orientations of the edges.)

The cost function associated with the orientation may in general be asymmetric, i.e.,
the cost of orienting an edge e = uv from v to u is different from orienting it from u to
v. Asymmetric costs may arise in many network routing problems. For instance, consider
the setting where traffic demand is being incrementally introduced in an existing network.
Load balancing constraints may favor forcing traffic in opposite directions between a given
pair of switches. Hence, when routing new demands, costs on the directed links may in-
crease proportionately to the amount of existing traffic. Asymmetric costs may also arise in
network planning due to assorted line termination equipment; these are the costs associated
with terminating the two ends of a link.

A closely related problem is the min-cost orientation problem where we are given an
undirected graph and the goal is to find a minimum cost orientation that satisfies certain
connectivity requirements. In this case, it is known that for strongly connected orienta-

tions, a good characterization for this problem follows from the classical min-max theorem
of Lucchesi and Younger. The orientation problem for general crossing supermodular re-
quirement functions can also be solved in polynomial time via a reduction to submodular
flows. However, these ideas do not seem to extend in any direct manner to our design prob-
lems with orientation constraints. Informally speaking, we can view network design with
orientation constraints as a two-phase problem: finding a subgraph of an undirected graph,
and orienting its edges so as to satisfy the cut constraints. While each of the subgraph se-
lection problem and the orientation problem is well-understood for crossing supermodular
functions, not much seems to be known for design problems that combine together these
two constraints.

Perhaps, the most basic design problem with orientation constraints is that of finding a
subgraph that admits a minimum cost strong orientation. This problem generalizes two well
known NP-hard problems. If the orientation cost function is symmetric, then the problem
reduces to finding a minimum cost 2-edge connected subgraph of G. On the other hand,
if there are no orientation constraints, then the problem reduces to finding a minimum
cost strongly connected subgraph of a directed graph. We note that for both problems,
2-approximation algorithms are known. In a recent work, Khanna et al. and obtained a
4-approximation algorithm.

An interesting open problem in this context is k-strong connectivity with orientation
constraints for which no non-trivial bounds are known. Unfortunately, the approach used
for strong connectivity completely breaks down as we move to 2-strong connectivity. A
possible approach for this problem is to use ideas from the work of Jain (that identifies and
rounds iteratively a large component in a basic feasible solution). In this case, it would
require proving, for example, that in every basic feasible solution there exists an orientation
constraint (on a pair of vertices u and v), where the fractions attached to the arcs (u,v)
and (v,u) add up to at least a constant. Thus, in each iteration, our algorithm would
then tighten such a constraint and require that the fractions add up to 1. At the end, all
orientation constraints would be tight, and then the problem can be solved in polynomial
time.

10

Gordon Wilfong

Two edge coloring problems.

0.9 Edge coloring dynamic bipartite multi-graphs

We are given two sets of nodes A and B and we are told that edges will appear and disappear
over time, all edges will have one node in A and one node in B and the degree at any node
will never exceed A. As edges appear, they must be assigned a color that differs from the
colors of all existing edges adjacent to each endpoint of the new edge. That is, the goal is
to maintain a proper edge coloring. The question is: How many colors are required to do
this?

More formally, let 05 (v) be the degree of node v given a set E of edges. Given a set N
of nodes and a maximum degree A define a set of edges E to be wvalid if and only if

1. for any {u,v} € E, u,v € N;
2. forany v € N, ég(v) < A.

Let the edge sequence & = (F1,Eo,...) be a sequence of valid edge sets E;. We define a
dynamic graph G(N, A,) to be the sequence of graphs (G1, Gz ...) such that G; = (N, E;).
We assume that G starts as just the set N of nodes and define Eq = () to be the initial set
of edges.

A coloring C assigns a color C(e) to each edge e. We define C = (C4,C>...), a sequence
of colorings, to be a proper coloring of G if for any ¢

1. C; is a proper coloring of Gj;
2. for any e such that e € FE;_1 and e € E;, C;_1(e) = Cj(e).
The following theorems are what we know about this problem.
Theorem 0.1 For any edge coloring algorithm, there is a dynamic bipartite graph G(A, B, A, E)

with max(|A|,|B|) = n where n = (1 + 0(1))A? such that the edge coloring algorithm must
use at least 2A—1 colors to color G.

Theorem 0.2 If G(A,B,A,E) has |A| = |B| = 2 then it can be edge colored with 3A/2
colors.

Theorem 0.3 If G(A, B,A,E) has |A| = |B| = 3, then it can be edge colored with 15A/8
colors.

Theorem 0.4 For any edge coloring algorithm, there erists a dynamic bipartite graph
G(A,B,A,&) where |A| = |B| = 3 such that the edge coloring algorithm must use at least
TA/4 colors.

11

Theorem 0.5 For any edge coloring algorithm, any € > 0 and A > 1/2¢, there exists a
dynamic bipartite graph with fewer than 1/€? nodes on each side that requires the algorithm
to use more than 2(1—e)A colors.

Thus the question as to how many colors are needed to edge color a dynamic bipartite
graph having k£ nodes on either side where k lies somewhere between 3 and about A? is
wide open. For instance, how many colors are needed if K = A? How about k = 47

(This problem comes from joint work with Haxell, Rasala and Winkler.)

0.10 Edge coloring bipartite multi-hypergraphs

Let G = (AU B, H) be a multi-hypergraph where A and B are sets of nodes and H is a
collection of hyperedges where each h € H consists of exactly 3 nodes from AU B and either
h has two nodes from A or two nodes from B. Suppose the maximum degree of any node
in G is A (that is, each node is an element of at most A hyperedges). An edge coloring of
G is an assignment of a color to each hyperedge so that no hyperedges with at least one
node in common are colored the same color. Then the question is: How many colors are
required to edge color G?

Of course, this question can be generalized to any sized hyperedges rather than just
those with 3 nodes and other combinations of how many nodes in a hyperedge are from
particular subsets of the nodes.

As far as we know, the only things known about this problem are the trivial upper
bound of 3A — 2 and a simple 2A lower bound construction.

(This problem comes from joint work with Haxell and Winkler.)

12

Mansoor Alicherry

0.11 Optimal cost chromatic partition (OCCP)

OCCP problem for a general graph can be defined as follows: Given a graph G = (V, E)
with n nodes and a sequence of coloring costs (ki, k2, . . ., k), find a proper coloring C(v) €
{1,2,...,n} of each node v € V such that the total coloring costs }~;_; k¢(y) are minimum.
This problem is a generalization of chromatic sum problem.

This problem is NP-hard for a general graph and solvable in linear time for trees. For
interval graphs it can be solved optimally in polynomial time if there are only two different
values for the coloring costs. However, if there are at least four different values for the
coloring costs, then the problem is NP-hard.

Problem: Is OCCP problem, for interval graphs, with only three different values for
the coloring costs in P?

13

George Karakostas

0.12 The single-source unsplittable flow problem

Statement without edge costs: Let G = (V, E) be a directed network with positive
edge capacities ue, a source s and k commodities with terminals ¢; and positive demands
d;,t = 1...k. We assume that u, > dpq; := mazd; for all edges, and that a vertex may
contain any number of terminals. We are looking for a routing in which each commodity %
flows through a single path from s to ¢; so that all the demands are satisfied and the total
flow through any edge is not more than the edge capacity.

Statement with edge costs: Same as before but now a cost per unit of flow is associated
with each edge, and we want to find an unsplittable routing with the minimum cost.

It may not be possible to find any unsplittable flow that satisfies the edge capacities. In
this case, we can ask for the smallest a > 1 (a is the congestion) such that if we multiply
all capacities by a, then we can route all demands unsplittably. In case we are not allowed
to change the capacities, we can ask for the minimum number of routing rounds needed to
satisfy all demands unsplittably.

Known results: The unsplittable flow problem was introduced by Kleinberg. He ob-
served that well-known NP-complete problems like PARTITION, 3-PARTITION and BIN
PACKING can be cast as unsplittable flow problems. This fact not only shows that unsplit-
table flow problems are NP-complete, but that the combination of routing and bin packing
characteristics makes these problems particularly hard to solve as well.

For the version without costs, Dinitz, Garg and Goemans (FOCS’98) give a 2-approximation
for the minimum congestion (more precisely, each capacity is violated by at most dy,45) or
routing in 5 rounds. For the version with costs, Kleinberg (FOCS’96) gave the first constant
factor bicriteria approximation algorithm with (congestion,cost)-approximation factor equal
to (6 + 2v/5.3 + 2v/5). This was improved to (3,2) by Klein and Kolliopoulos (FOCS’97),
and to (3,1) by Skutella. The main open problem regarding unsplittable flows is whether
one can improve this factor (for example, can it be reduced to (2,1), maybe by combining
ideas from the works in both the cost and costless versions).

Observations and progress: Many of the participants consider the problem of how to
find an unsplittable flow in the network, with capacities f, + dpmaz, Whose cost is no more
than that of the original (split) flow f. Leonid’s modified proof (of a sightly stronger result)
was also presented and attempts were made to turn it into a polytime algorithm.

Dinitz, Garg and Goemans prove their result via augmentations along special types of
cycles. Vetta and Shepherd showed that graphs without such cycles actually form trees
(this was done actually as an attack on the confluent flow problem - see later). We give a
sketch of this argument.

Consider any b-flow vector f for our problem. By this, we mean that for each node v,
the net-flow out of v is by the net flow into r is >, by. We define the congestion of v
under f, to be the total flow through the node v, i.e., ¢(v) = f(6~(v)). The congestion of

14

f, denoted ®(f) is max{c(v) : v € V — 2}. Clearly, the minimum confluence is at least the
minimum confluence of a b-flow to r. In the following we prove:

We consider an acyclic graph D = (V, A). Call a directed path P in D an I-path if each
of its internal nodes has in-degree exactly one. We call a cycle C' (in the undirected sense)
dingo (Dinitz, Garg, Goemans) if it can be written as C = Py, Q1, P, ..., P, Q; where for
each 1 > 1, P; is an I-path. In addition, P; would be an I-path but for a single internal
node called the black sheep.

In the following, for a digraph D, a hanging arborescence is an arborescence T with a
leaf v such that T'—w is a connected component of D —v. We obtain the following structure
on acylic digraphs with no dingo cycles.

Claim 0.1 Let D be a connected acylic digraph. Then either D has a dingo cycle, or a
hanging arborescence.

Proof: Suppose that D is a minimal counterexample and so none of the two structures
exist. Suppose there is a cut arc a = (u,v) of D, where v lies in a nontrivial component
of D — a. Suppose this is not the case, and let D' be obtained by deleting all nodes in v’s
component except for v. Then clearly no node of D’ has out-degree one either. Moreover,
any dingo cycle in D’ would also have been dingo in D. Thus there is no such cycle, and
hence by minimality, there is a hanging arborescence at some node x € D’. But this was
then also such an arborescence for D itself. We may henceforth assume that any cut arc
(u,v) has the property that v is a leaf. That is D is obtained by hanging some leaves (u,v)
from nodes u in some 2-edge-connected digraph D'.

Now basically apply the dingo argument. We grow a cycle, alternately finding an I-path,
and then an arbitrary path. Start at a source and greedily grow a path avoiding leaf arcs
until we reach a node z of in-degree at least 2. If we cannot do so, we would choose an arc
a = (u,v) at some point where v is only adjacent to some pendant leaves. But then the arc
a would contradict our earlier assertion on cut arcs.

iFrom the node x we now greedily grow a directed path into z, until we back up into
some source node y. One then checks that this procedure can always be applied. Moreover,
since there is no node of out-degree 1, the node y may be used to start growing a new
I-path. Let Pi,Q1,Ps,... be the paths constructed. Eventually, we repeat a visit to a
previous node. There are two cases. Suppose first that in growing some P, we revisit a
previous node w. Note that w cannot be an internal node of some P; since any such node
has in-degree 1. ALso, w cannot be the beginning of an i-path, since any such node is a
source. Thus w lies on some @Q; and is not the last node of @);. One sees that the cycle
identified is then a dingo cycle.

Second, suppose that we revisit a node, again called w, for the first time while growing a
Q;. First if w lies on some P; but is not the last such node, then starting at w and following
FP;,Q;, ... forms a dingo cycle. Otherwise, w lies on some ();. Then let z be the last node of
that @;. Then a dingo cycle is obtained by starting at z and following P11, Q;+1 - .. until
we reach ; and follow the path to w, and then following); to z.

a

15

Adrian Vetta

0.13 Confluent Flow Problem

We consider a class of multi-commodity flow problems, the confluent flow problem. Take
a network G = (V, A) and a set of source-sink pairs (si,t1),...,(sg, k). The goal in a
generic multi-commodity flow problem is to route r; units of flow from s; to ;. In addition,
we wish this flow to have the minimum possible cost. A confluent flow is a specific type
of multi-commodity flow that is constrained to use at most one path between any pair of
vertices u and v. Confluent flows are now generating widespread interest. This attention
is primarily based on the following distinct reasons. Firstly, confluent flows are of very
practical importance: destination based routing utilised by the internet produces confluent
flows. Secondly, from a mathematical view-point confluent flows correspond to elegant
combinatorial structures worthy of study in their own right.

In internet based applications the cost of a flow is (partially) dependent upon the con-
gestion in the network. Therefore the ability to design good algorithms that produce low
congestion confluent flows is vital. This task, though, is rather difficult. Consider for ex-
ample, the specific case in which all the sinks are identical. In such an instance, the task of
finding a confluent flow that minimises the maximum congestion on any link corresponds to
the graph theoretic problem of finding a rooted arborescence in which the size of the largest
subtree is minimised. It was shown by Chen, Rajaraman and Sundaram (STOC 2003) that
this problem is MAXSNP-hard, i.e. no polynomially time algorithm can find a solution
that is guaranteed to be arbitrarily close to the optimal solution. They also show that that
problem is approximable to within a factor O(y/n) of optimal where n is the number of
vertices in the network. Thus the resultant gap between the lower and upper bounds of
approximability was large.

During the meeting, Adrian Vetta improved the inapproximability bound significantly
from (1) to Q(logn). Chekuri, Shepherd, Vetta, tried to match this with an O(log(n))
approximation algorithm, using the structural result for graphs with no dingo cycles (see
the section on unsplittable flows). One can show that augmenting along a dingo cycle does
not increase a node’s congestion by more than its offered demand (i.e., 1 in the uniform
case). (One may also show a log(n)-approximation if the underlying graph is indeed a tree.)
Chekuri also showed that if the support graph of the flow is a layered graph with d levels,
then an O(d) approximation can be obtained.

16

Dan Bienstock

0.14 Combinatorial Algorithms for Short-Path-Decomposable Flows

Given a directed graph G = (V, A) and distinct vertices s,t € V the s-t maximum flow
problem is well known. We are interested in finding flows that do use short paths - that is
paths with some bound K on the number of edges in the path. We call such a flow K-hop
restricted. A couple of questions are of interest. First, is there a combinatorial algorithm
to find the maximum K-hop restricted flow? Second, given a K-hop restricted flow in the
compact form (only edge flows are given), can we decompose the flow into K-hop restricted
flow paths using a combinatorial algorithm? Bienstock has described an algorithm for these
using a time-expanded graph.

17

Randeep Bhatia

0.15 Problems based on shortest path routing

In all these problems we assume a network G = (V, E) with capacities u(e) and cost c¢(e) for
all links e € E. In our model all routing happens on shortest paths (determined based on
link costs). Specifically at any given time a flow of f unit between nodes s and ¢ is routed
on a shortest path between s and ¢ in the graph G’ C G, where G’ contains only those links
of G that can accommodate an additional f units of flow. We assume that the shortest
paths are unique and that the shortest path computation algorithm implements some kind
of tie breaking rule.

Maximum concurrent flow problem: In this problem we are given a demand matrix
D = {d(s,t)} and we want to compute the largest A such that it is possible to route at least
Ad(s,t) aggregate flow between all pairs of nodes s,t. More formally we are interested in
finding the largest A and a sequence of tuples (s;,%;, fi),2 = 1,2,..., such that f; amount
of flow can be routed between s; and ¢; in the graph G; at the i-th iteration (G; = G, G,
is the graph obtained by routing f; units of flow between s; and #; in G1 and so on). In
addition

ST fi > Ad(s,).

i|si=s,t;=t

Minimum congestion with minimum link cost changes: In this problem the links
capacities can be exceeded. Thus a link e can accommodate more than u(e) unit of flow.
Note that in this case all the flow between any pair of nodes s and ¢ is routed on a single
(shortest cost) path. The congestion of a link e with flow f(e) is f(e)/u(e). We are given
a demand matrix D and a congestion bound 6. The objective is to find a minimum set
of links (and their new link costs) such that by changing the link cost of these links the
maximum congestion on any link for routing the demand matrix D is at most 6.

Minimum congestion with minimum link additions: In this problem the links
capacities can be exceeded. There is a special sink node s and every other node ¢ wishes
to route n; units of flow to node s. Note that these flows will be routed on a shortest path
tree rooted at node s. Given a congestion bound @ the objective is to add a minimum set
of links, each incident on node s and each with capacity B such that with a suitable choice
of costs for the newly added links the maximum congestion on any link is at most €. This
problem is as hard as set cover. Does there exist a O(logn) approximation algorithm?

Note added Sept 12: We have learned recently from Seffi Naor that these results
have been settled by a team of several collaborators from MIT, Technion, Bell Labs and
IBM Research.

18

Bruce Shepherd

0.16 Packing Dijoins and Feedback Arc Sets

The following problem is open as far as we know. Given a simple planar digraph, partition
the arcs into 3 feedback arc sets. (A feedback arc set is a set of arcs whose deletion results
in an acyclic digraph.)

This is an easily stated version of a more general conjecture due to Woodall. Our goal
is to discuss several weighted versions of Woodall’s conjecture. For a digraph D = (V, A)
and set S C V, we denote by §7(S) the set of arcs with tail in S and head in V — S. (We
define 6~ (S) similarly.) A directed cut in a digraph D is a set of arcs of the form §1(S)
such that 67 (S) = 0. We often refer to S as a shore of the cut. A dijoin is a set A’ of arcs
such that A’ N6 (S) # 0 for each directed cut §7(S). Woodall’s conjecture states that any
directed graph contains k disjoint dijoins if each directed cut contains at least k arcs.

Note that if D is planar, then a set of arcs is a dijoin if and only if they form a feedback
arc set in the planar dual of D. Thus for £ = 3, Woodall’s conjecture coincides with the
opening conjecture.

A more bold conjecture was made by Edmonds and Giles. Namely, suppose that the
arcs of D have integer nonnegative weights w,. Let k now denote the minimum weight of a
directed cut. A w-packing of dijoins is a collection of dijoins such that each arc is contained
at most w, dijoins in the collection. Schrijver disproved this conjecture by exhibiting a
digraph and 0,1 vector w such that k¥ = 2 but for which there existed no pair of disjoint
dijoins amongst the arcsx {a : w, = 1}. Nevertheless, we may have approximate packing
results in the vein of Erdos-Posa or Gallai-Younger. Namely, we ask whether there is an
increasing function f() such that each such digraph contains a w-packing of f(k) dijoins.
Indeed, this is likely tied to resolving even the following simple question. Does there exist
a constant C, such that if D is a digraph whose minimum w-weight directed cut is at least
C, then D contains a w-packing of 2 dijoins.

In the positive direction, Shepherd-Vetta showed that there is always a half-integral
packing of g disjoint dijoins. They also reduce the question of determining the existence
of two disjoint dijoins (in the weighted setting) to that of finding an integral point in a
certain weakly submodular flow polyhedron. The problem is also related to a question of
Bang-Jensen and Jensen who asked whether large enough directed-in and -out connectivity
from a node v, is sufficient to guarantee the existence of 4 disjoint arborescences rooted at
v: two directed in, and two directed out.

References

[1] D. Bienstock. Personal communication, August 2003.

[2] G. Cailinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences, 60:564-574, 2000.

19

[3] C. Chekuri, S. Guha, and J. Naor. Approximating Steiner k-cuts. In Proceedings of
ICALP, 2003.

[4] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. STAM J. on Computing, 23:864-894, 1994.

[5] J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards, B71:233-240, 1967.

[6] A. Freund and H. Karloff. A lower bound of 8/(7 + 1/(k — 1)) on the integrality ratio
of the Calinescu-Karloff-Rabani relaxation for multiway cut. Information Processing
Letters, 75(1-2): 43-50, 2000.

[7] M. Goemans and D. Williamson. A general approximation technique for constrained
forest problems. STAM J. on Computing, 24:296-317, 1995.

[8] O. Goldschmidt and D. Hochbaum. Polynomial algorithm for the k-cut problem. Math-
ematics of Operations Research, 19:24-37, 1994 .

[9] D. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the
ACM, 43:601-640, 1996.

[10] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for
a geometric embedding of minimum multiway cut. In Proceedings of the 29th ACN
Symposium on Theory of Computing, pp. 668-678, 1999.

[11] J. Naor and Y. Rabani. Approximating k-cuts. In Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 2627, 2001.

[12] R. Ravi and A. Sinha. Approximating k-cuts via Network Strength. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 621-622, 2002.

[13] H. Saran and V.V. Vazirani. Finding k-cuts within twice the optimal. SIAM J. on
Computing, 24:101-108, 1995.

[14] V. Vazirani. Approximation Algorithms. Springer, 2001.

20

